Skip to contents

Perform a competitive gene set analysis accounting for correlation between genes.

Usage

zenith_gsa(
  fit,
  geneSets,
  coefs,
  use.ranks = FALSE,
  n_genes_min = 10,
  inter.gene.cor = 0.01,
  progressbar = TRUE,
  ...
)

# S4 method for MArrayLM,GeneSetCollection
zenith_gsa(
  fit,
  geneSets,
  coefs,
  use.ranks = FALSE,
  n_genes_min = 10,
  inter.gene.cor = 0.01,
  progressbar = TRUE,
  ...
)

Arguments

fit

results from dream()

geneSets

GeneSetCollection

coefs

list of coefficients to test using topTable(fit, coef=coefs[[i]])

use.ranks

do a rank-based test TRUE or a parametric test FALSE? default: FALSE

n_genes_min

minumum number of genes in a geneset

inter.gene.cor

if NA, estimate correlation from data. Otherwise, use specified value

progressbar

if TRUE, show progress bar

...

other arguments

Value

data.frame of results for each gene set and cell type

Details

This code adapts the widely used camera() analysis (Wu and Smyth 2012) in the limma package (Ritchie et al. 2015) to the case of linear (mixed) models used by variancePartition::dream().

References

Ritchie ME, Phipson B, Wu DI, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma powers differential expression analyses for RNA-sequencing and microarray studies.” Nucleic acids research, 43(7), e47--e47.

Wu D, Smyth GK (2012). “Camera: a competitive gene set test accounting for inter-gene correlation.” Nucleic acids research, 40(17), e133. doi:10.1093/nar/gks461 .

See also

Examples

# Load packages
library(edgeR)
library(variancePartition)
library(tweeDEseqCountData)

# Load RNA-seq data from LCL's
data(pickrell)
geneCounts = exprs(pickrell.eset)
df_metadata = pData(pickrell.eset)

# Filter genes
# Note this is low coverage data, so just use as code example
dsgn = model.matrix(~ gender, df_metadata)
keep = filterByExpr(geneCounts, dsgn, min.count=5)

# Compute library size normalization
dge = DGEList(counts = geneCounts[keep,])
dge = calcNormFactors(dge)

# Estimate precision weights using voom
vobj = voomWithDreamWeights(dge, ~ gender, df_metadata)

# Apply dream analysis
fit = dream(vobj, ~ gender, df_metadata)
fit = eBayes(fit)

# Load Hallmark genes from MSigDB
# use gene 'SYMBOL', or 'ENSEMBL' id
# use get_GeneOntology() to load Gene Ontology
gs = get_MSigDB("H", to="ENSEMBL")
   
# Run zenith analysis
res.gsa = zenith_gsa(fit, gs, 'gendermale', progressbar=FALSE )

# Show top gene sets
head(res.gsa, 2)
#>                                              coef
#> M5890_HALLMARK_TNFA_SIGNALING_VIA_NFKB gendermale
#> M5892_HALLMARK_CHOLESTEROL_HOMEOSTASIS gendermale
#>                                                                       Geneset
#> M5890_HALLMARK_TNFA_SIGNALING_VIA_NFKB M5890_HALLMARK_TNFA_SIGNALING_VIA_NFKB
#> M5892_HALLMARK_CHOLESTEROL_HOMEOSTASIS M5892_HALLMARK_CHOLESTEROL_HOMEOSTASIS
#>                                        NGenes Correlation      delta        se
#> M5890_HALLMARK_TNFA_SIGNALING_VIA_NFKB    118        0.01 -0.9999389 0.1621467
#> M5892_HALLMARK_CHOLESTEROL_HOMEOSTASIS     37        0.01 -1.0915363 0.2296170
#>                                              p.less p.greater       PValue
#> M5890_HALLMARK_TNFA_SIGNALING_VIA_NFKB 2.268956e-08 1.0000000 4.537911e-08
#> M5892_HALLMARK_CHOLESTEROL_HOMEOSTASIS 5.493684e-06 0.9999945 1.098737e-05
#>                                        Direction          FDR
#> M5890_HALLMARK_TNFA_SIGNALING_VIA_NFKB      Down 2.132818e-06
#> M5892_HALLMARK_CHOLESTEROL_HOMEOSTASIS      Down 2.582032e-04

# for each cell type select 3 genesets with largest t-statistic
# and 1 geneset with the lowest
# Grey boxes indicate the gene set could not be evaluted because
#    to few genes were represented
plotZenithResults(res.gsa)