Forest plot
Arguments
- x
- result from - dreamlet
- gene
- gene to show results for 
- coef
- coefficient to test with - topTable
- ...
- other arguments 
- assays
- array of assays to plot 
- ylim
- limits for the y axis 
Examples
library(muscat)
library(SingleCellExperiment)
data(example_sce)
# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE
)
# voom-style normalization
res.proc <- processAssays(pb, ~group_id)
#>   B cells...
#> 0.12 secs
#>   CD14+ Monocytes...
#> 0.23 secs
#>   CD4 T cells...
#> 0.15 secs
#>   CD8 T cells...
#> 0.078 secs
#>   FCGR3A+ Monocytes...
#> 0.17 secs
# Differential expression analysis within each assay,
# evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)
#>   B cells...
#> 0.089 secs
#>   CD14+ Monocytes...
#> 0.11 secs
#>   CD4 T cells...
#> 0.11 secs
#>   CD8 T cells...
#> 0.084 secs
#>   FCGR3A+ Monocytes...
#> 0.11 secs
# show coefficients estimated for each cell type
coefNames(res.dl)
#> [1] "(Intercept)"  "group_idstim"
# Show estimated log fold change with in each cell type
plotForest(res.dl, gene = "ISG20", coef = "group_idstim")
