Skip to contents

Introduction

Since read counts are summed across cells in a pseudobulk approach, modeling continuous cell-level covariates also requires a collapsing step. Here we summarize the values of a variable from a set of cells using the mean, and store the value for each cell type. Including these variables in a regression formula uses the summarized values from the corresponding cell type.

We demonstrate this feature on a lightly modified analysis of PBMCs from 8 individuals stimulated with interferon-β (Kang, et al, 2018, Nature Biotech).

Standard processing

Here is the code from the main vignette:

library(dreamlet)
library(muscat)
library(ExperimentHub)
library(scater)

# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]

# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[, colData(sce)$multiplets == "singlet"]

# compute QC metrics
qc <- perCellQCMetrics(sce)

# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]

# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus <- sce$stim

In many datasets, continuous cell-level variables could be mapped reads, gene count, mitochondrial rate, etc. There are no continuous cell-level variables in this dataset, so we can simulate two from a normal distribution:

sce$value1 <- rnorm(ncol(sce))
sce$value2 <- rnorm(ncol(sce))

Pseudobulk

Now compute the pseudobulk using standard code:

sce$id <- paste0(sce$StimStatus, sce$ind)

# Create pseudobulk
pb <- aggregateToPseudoBulk(sce,
  assay = "counts",
  cluster_id = "cell",
  sample_id = "id",
  verbose = FALSE
)

The means per variable, cell type, and sample are stored in the pseudobulk SingleCellExperiment object:

metadata(pb)$aggr_means
## # A tibble: 128 × 5
## # Groups:   cell [8]
##    cell    id       cluster   value1   value2
##    <fct>   <fct>      <dbl>    <dbl>    <dbl>
##  1 B cells ctrl101     3.96  0.127    0.0241 
##  2 B cells ctrl1015    4.00 -0.0539  -0.00302
##  3 B cells ctrl1016    4     0.00571  0.0366 
##  4 B cells ctrl1039    4.04 -0.102   -0.0970 
##  5 B cells ctrl107     4     0.0438   0.0163 
##  6 B cells ctrl1244    4    -0.0928   0.138  
##  7 B cells ctrl1256    4.01  0.0344  -0.0432 
##  8 B cells ctrl1488    4.02 -0.0599  -0.00684
##  9 B cells stim101     4.09  0.128    0.0350 
## 10 B cells stim1015    4.06  0.0267   0.0681 
## # ℹ 118 more rows

Analysis

Including these variables in a regression formula uses the summarized values from the corresponding cell type. This happens behind the scenes, so the user doesn’t need to distinguish bewteen sample-level variables stored in colData(pb) and cell-level variables stored in metadata(pb)$aggr_means.

Variance partition and hypothesis testing proceeds as ususal:

form <- ~ StimStatus + value1 + value2

# Normalize and apply voom/voomWithDreamWeights
res.proc <- processAssays(pb, form, min.count = 5)

# run variance partitioning analysis
vp.lst <- fitVarPart(res.proc, form)

# Summarize variance fractions genome-wide for each cell type
plotVarPart(vp.lst, label.angle = 60)

# Differential expression analysis within each assay
res.dl <- dreamlet(res.proc, form)

# dreamlet results include coefficients for value1 and value2
res.dl
## class: dreamletResult 
## assays(8): B cells CD14+ Monocytes ... Megakaryocytes NK cells
## Genes:
##  min: 164 
##  max: 5262 
## details(7): assay n_retain ... n_errors error_initial
## coefNames(4): (Intercept) StimStatusstim value1 value2

Details

A variable in colData(sce) is handled according to if the variable is

  • continuous: the mean per donor/cell type is stored in metadata(pb)$aggr_means
  • discrete
    • [constant within each donor/cell type] it is stored in colData(pb)
    • [varies within each donor/cell type] there is no good way to summarize it. The variable is dropped.

Session Info

## R version 4.3.0 (2023-04-21)
## Platform: x86_64-apple-darwin22.4.0 (64-bit)
## Running under: macOS Ventura 13.5
## 
## Matrix products: default
## BLAS:   /Users/gabrielhoffman/prog/R-4.3.0/lib/libRblas.dylib 
## LAPACK: /usr/local/Cellar/r/4.3.0_1/lib/R/lib/libRlapack.dylib;  LAPACK version 3.11.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: America/New_York
## tzcode source: internal
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] muscData_1.14.0             scater_1.28.0              
##  [3] scuttle_1.10.1              ExperimentHub_2.8.1        
##  [5] AnnotationHub_3.8.0         BiocFileCache_2.8.0        
##  [7] dbplyr_2.3.2                muscat_1.14.0              
##  [9] dreamlet_1.1.5              SingleCellExperiment_1.22.0
## [11] SummarizedExperiment_1.30.1 Biobase_2.60.0             
## [13] GenomicRanges_1.52.0        GenomeInfoDb_1.36.1        
## [15] IRanges_2.34.1              S4Vectors_0.38.1           
## [17] BiocGenerics_0.46.0         MatrixGenerics_1.12.0      
## [19] matrixStats_1.0.0           variancePartition_1.33.2   
## [21] BiocParallel_1.34.2         limma_3.56.2               
## [23] ggplot2_3.4.4               BiocStyle_2.28.0           
## 
## loaded via a namespace (and not attached):
##   [1] fs_1.6.2                      bitops_1.0-7                 
##   [3] httr_1.4.6                    RColorBrewer_1.1-3           
##   [5] doParallel_1.0.17             Rgraphviz_2.44.0             
##   [7] numDeriv_2016.8-1.1           tools_4.3.0                  
##   [9] sctransform_0.3.5             backports_1.4.1              
##  [11] utf8_1.2.3                    R6_2.5.1                     
##  [13] GetoptLong_1.0.5              withr_2.5.0                  
##  [15] prettyunits_1.1.1             gridExtra_2.3                
##  [17] cli_3.6.1                     textshaping_0.3.6            
##  [19] sandwich_3.0-2                labeling_0.4.2               
##  [21] sass_0.4.6                    KEGGgraph_1.60.0             
##  [23] SQUAREM_2021.1                mvtnorm_1.2-2                
##  [25] blme_1.0-5                    pkgdown_2.0.7                
##  [27] mixsqp_0.3-48                 systemfonts_1.0.4            
##  [29] zenith_1.4.1                  parallelly_1.36.0            
##  [31] invgamma_1.1                  RSQLite_2.3.1                
##  [33] generics_0.1.3                shape_1.4.6                  
##  [35] gtools_3.9.4                  dplyr_1.1.2                  
##  [37] Matrix_1.5-4.1                ggbeeswarm_0.7.2             
##  [39] fansi_1.0.4                   abind_1.4-5                  
##  [41] lifecycle_1.0.3               multcomp_1.4-23              
##  [43] yaml_2.3.7                    edgeR_3.42.4                 
##  [45] gplots_3.1.3                  grid_4.3.0                   
##  [47] blob_1.2.4                    promises_1.2.0.1             
##  [49] crayon_1.5.2                  lattice_0.21-8               
##  [51] beachmat_2.16.0               msigdbr_7.5.1                
##  [53] annotate_1.78.0               KEGGREST_1.40.0              
##  [55] pillar_1.9.0                  knitr_1.43                   
##  [57] ComplexHeatmap_2.16.0         rjson_0.2.21                 
##  [59] boot_1.3-28.1                 estimability_1.4.1           
##  [61] corpcor_1.6.10                future.apply_1.11.0          
##  [63] codetools_0.2-19              glue_1.6.2                   
##  [65] data.table_1.14.8             vctrs_0.6.3                  
##  [67] png_0.1-8                     Rdpack_2.4                   
##  [69] gtable_0.3.3                  assertthat_0.2.1             
##  [71] cachem_1.0.8                  xfun_0.39                    
##  [73] mime_0.12                     rbibutils_2.2.13             
##  [75] S4Arrays_1.0.4                Rfast_2.0.7                  
##  [77] coda_0.19-4                   survival_3.5-5               
##  [79] iterators_1.0.14              ellipsis_0.3.2               
##  [81] interactiveDisplayBase_1.38.0 TH.data_1.1-2                
##  [83] nlme_3.1-162                  pbkrtest_0.5.2               
##  [85] bit64_4.0.5                   filelock_1.0.2               
##  [87] progress_1.2.2                EnvStats_2.7.0               
##  [89] rprojroot_2.0.3               bslib_0.4.2                  
##  [91] TMB_1.9.4                     irlba_2.3.5.1                
##  [93] vipor_0.4.5                   KernSmooth_2.23-21           
##  [95] colorspace_2.1-0              rmeta_3.0                    
##  [97] DBI_1.1.3                     DESeq2_1.40.1                
##  [99] tidyselect_1.2.0              emmeans_1.8.7                
## [101] curl_5.0.0                    bit_4.0.5                    
## [103] compiler_4.3.0                graph_1.78.0                 
## [105] BiocNeighbors_1.18.0          desc_1.4.2                   
## [107] DelayedArray_0.26.3           bookdown_0.34                
## [109] scales_1.2.1                  caTools_1.18.2               
## [111] remaCor_0.0.17                rappdirs_0.3.3               
## [113] stringr_1.5.0                 digest_0.6.33                
## [115] minqa_1.2.5                   rmarkdown_2.22               
## [117] aod_1.3.2                     XVector_0.40.0               
## [119] RhpcBLASctl_0.23-42           htmltools_0.5.5              
## [121] pkgconfig_2.0.3               lme4_1.1-34                  
## [123] sparseMatrixStats_1.12.0      highr_0.10                   
## [125] mashr_0.2.69                  fastmap_1.1.1                
## [127] rlang_1.1.1                   GlobalOptions_0.1.2          
## [129] shiny_1.7.4                   DelayedMatrixStats_1.22.0    
## [131] farver_2.1.1                  jquerylib_0.1.4              
## [133] zoo_1.8-12                    jsonlite_1.8.5               
## [135] BiocSingular_1.16.0           RCurl_1.98-1.12              
## [137] magrittr_2.0.3                GenomeInfoDbData_1.2.10      
## [139] munsell_0.5.0                 Rcpp_1.0.11                  
## [141] babelgene_22.9                viridis_0.6.3                
## [143] EnrichmentBrowser_2.30.1      RcppZiggurat_0.1.6           
## [145] stringi_1.7.12                zlibbioc_1.46.0              
## [147] MASS_7.3-60                   plyr_1.8.8                   
## [149] listenv_0.9.0                 parallel_4.3.0               
## [151] ggrepel_0.9.3                 Biostrings_2.68.1            
## [153] splines_4.3.0                 hms_1.1.3                    
## [155] circlize_0.4.15               locfit_1.5-9.7               
## [157] reshape2_1.4.4                ScaledMatrix_1.8.1           
## [159] BiocVersion_3.17.1            XML_3.99-0.14                
## [161] evaluate_0.21                 BiocManager_1.30.20          
## [163] httpuv_1.6.11                 nloptr_2.0.3                 
## [165] foreach_1.5.2                 tidyr_1.3.0                  
## [167] purrr_1.0.2                   future_1.32.0                
## [169] clue_0.3-64                   scattermore_1.1              
## [171] ashr_2.2-54                   rsvd_1.0.5                   
## [173] broom_1.0.5                   xtable_1.8-4                 
## [175] fANCOVA_0.6-1                 later_1.3.1                  
## [177] viridisLite_0.4.2             ragg_1.2.5                   
## [179] truncnorm_1.0-9               tibble_3.2.1                 
## [181] lmerTest_3.1-3                glmmTMB_1.1.7                
## [183] memoise_2.0.1                 beeswarm_0.4.0               
## [185] AnnotationDbi_1.62.1          cluster_2.1.4                
## [187] globals_0.16.2                GSEABase_1.62.0