Skip to contents

Instroduction

mashr is a Bayesian statistical method to borrow information across genes and cell type (Urbut, et al, 2019). mashr takes estimated log fold changes and standard errors for each cell type and gene from dreamlet, and produces posterior estimates with more accuracy and precision then the original parameter estimates.

Standard dreamlet analysis

Preprocess data

Here single cell RNA-seq data is downloaded from ExperimentHub

library(dreamlet)
library(muscat)
library(ExperimentHub)
library(zenith)
library(scater)

# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]

# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[,colData(sce)$multiplets == 'singlet']

# compute QC metrics
qc <- perCellQCMetrics(sce)

# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]

# compute normalized data
sce <- sce[rowSums(counts(sce) > 1) >= 10, ]
sce <- computeLibraryFactors(sce)
sce <- logNormCounts(sce)

# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus = sce$stim

Aggregate to pseudobulk

# Since 'ind' is the individual and 'StimStatus' is the stimulus status,
# create unique identifier for each sample
sce$id <- paste0(sce$StimStatus, sce$ind)

# Create pseudobulk data by specifying cluster_id and sample_id
# Count data for each cell type is then stored in the `assay` field
# assay: entry in assayNames(sce) storing raw counts
# cluster_id: variable in colData(sce) indicating cell clusters
# sample_id: variable in colData(sce) indicating sample id for aggregating cells
pb <- aggregateToPseudoBulk(sce,
    assay = "counts",     
    cluster_id = "cell",  
    sample_id = "id",
    verbose = FALSE)

dreamlet for pseudobulk

# Normalize and apply voom/voomWithDreamWeights
res.proc = processAssays( pb, ~ StimStatus, min.count=5)

# Differential expression analysis within each assay,
# evaluated on the voom normalized data 
res.dl = dreamlet( res.proc, ~ StimStatus)

Run mashr analysis

# run mashr model to borrow information across genes and
# cell types in estimating coefficients' posterior distribution
res_mash = run_mash(res.dl, coef='StimStatusstim')

Summarize mashr results

Compute summary of mashr posterior distributions

library(mashr)

# extract statistics from mashr model
# NA values indicate genes not sufficiently expressed
# in a given cell type

# original logFC
head(res_mash$logFC.original)[1:4, 1:4]
##       B cells CD14+ Monocytes CD4 T cells CD8 T cells
## A1BG       NA              NA -0.73718671          NA
## AAAS       NA              NA -0.56991157          NA
## AAED1      NA        1.426001  0.07140051          NA
## AAK1       NA              NA -0.91972740          NA
# posterior mean for logFC
head(get_pm(res_mash$model))[1:4, 1:4]
##       B cells CD14+ Monocytes CD4 T cells CD8 T cells
## A1BG       NA              NA  -0.6327307          NA
## AAAS       NA              NA  -0.4543872          NA
## AAED1      NA        1.378843   0.0201326          NA
## AAK1       NA              NA  -0.8578750          NA
# how many gene-by-celltype tests are significant
# i.e.  if a gene is significant in 2 celltypes, it is counted twice
table(get_lfsr(res_mash$model) < 0.05, useNA="ifany")
## 
## FALSE  TRUE  <NA> 
##  8089  6073 30134
# how many genes are significant in at least one cell type
table( apply(get_lfsr(res_mash$model), 1, min, na.rm=TRUE) < 0.05)
## 
## FALSE  TRUE 
##  2568  2969
# how many genes are significant in each cell type
apply(get_lfsr(res_mash$model), 2, function(x) sum(x < 0.05, na.rm=TRUE))
##           B cells   CD14+ Monocytes       CD4 T cells       CD8 T cells 
##               767              2086              1525               412 
##   Dendritic cells FCGR3A+ Monocytes    Megakaryocytes          NK cells 
##                52               566                36               629
# examine top set of genes
# which genes are significant in at least 1 cell type
sort(names(get_significant_results(res_mash$model)))[1:10]
##  [1] "ACTB"                  "ACTG1_ENSG00000184009" "ARPC1B"               
##  [4] "ATP6V0E1"              "B2M"                   "BTF3"                 
##  [7] "BTG1"                  "CALM2"                 "CD74"                 
## [10] "CFL1"
# There is a lot of variation in the raw logFC
res_mash$logFC.original["ISG20",]
##           B cells   CD14+ Monocytes       CD4 T cells       CD8 T cells 
##          3.200534          5.865638          3.060855          3.533391 
##   Dendritic cells FCGR3A+ Monocytes    Megakaryocytes          NK cells 
##          3.593594          4.370017                NA          3.577744
# posterior mean after borrowing across cell type and genes
get_pm(res_mash$model)["ISG20",]
##           B cells   CD14+ Monocytes       CD4 T cells       CD8 T cells 
##          3.201633          5.807546          3.063965          3.535864 
##   Dendritic cells FCGR3A+ Monocytes    Megakaryocytes          NK cells 
##          3.601904          4.350143                NA          3.577692

Gene set analysis

Perform gene set analysis with zenith using posterior mean for each coefficient

# gene set analysis using mashr results
library(zenith)

# Load Gene Ontology database 
# use gene 'SYMBOL', or 'ENSEMBL' id
# use get_MSigDB() to load MSigDB 
go.gs = get_GeneOntology("CC", to="SYMBOL")

# valid values for statistic: 
# "tstatistic", "abs(tstatistic)", "logFC", "abs(logFC)"
df_gs = zenith_gsa(res_mash, go.gs)

# Heatmap of results
plotZenithResults(df_gs, 5, 1)
plot of chunk zenith
plot of chunk zenith
# forest plot based on mashr results
plotForest(res_mash, "ISG20") 
plot of chunk forest
plot of chunk forest

Volcano plot based on local False Sign Rate (lFSR) estimated from the posterior distribution of each coefficient.

# volcano plot based on mashr results
# yaxis uses local false sign rate (lfsr)
plotVolcano(res_mash)
plot of chunk volcano
plot of chunk volcano

Session Info

## R version 4.3.0 (2023-04-21)
## Platform: x86_64-apple-darwin22.4.0 (64-bit)
## Running under: macOS Ventura 13.5
## 
## Matrix products: default
## BLAS:   /Users/gabrielhoffman/prog/R-4.3.0/lib/libRblas.dylib 
## LAPACK: /usr/local/Cellar/r/4.3.0_1/lib/R/lib/libRlapack.dylib;  LAPACK version 3.11.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: America/New_York
## tzcode source: internal
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices datasets  utils     methods  
## [8] base     
## 
## other attached packages:
##  [1] mashr_0.2.69                ashr_2.2-54                
##  [3] muscData_1.14.0             scater_1.28.0              
##  [5] scuttle_1.10.1              SingleCellExperiment_1.22.0
##  [7] SummarizedExperiment_1.30.1 Biobase_2.60.0             
##  [9] GenomicRanges_1.52.0        GenomeInfoDb_1.36.1        
## [11] IRanges_2.34.1              S4Vectors_0.38.1           
## [13] MatrixGenerics_1.12.0       matrixStats_1.0.0          
## [15] zenith_1.3.0                ExperimentHub_2.8.0        
## [17] AnnotationHub_3.8.0         BiocFileCache_2.8.0        
## [19] dbplyr_2.3.2                BiocGenerics_0.46.0        
## [21] muscat_1.14.0               dreamlet_0.99.23           
## [23] variancePartition_1.31.11   BiocParallel_1.34.2        
## [25] limma_3.56.2                ggplot2_3.4.2              
## 
## loaded via a namespace (and not attached):
##   [1] bitops_1.0-7                  httr_1.4.6                   
##   [3] RColorBrewer_1.1-3            doParallel_1.0.17            
##   [5] Rgraphviz_2.44.0              numDeriv_2016.8-1.1          
##   [7] tools_4.3.0                   sctransform_0.3.5            
##   [9] backports_1.4.1               utf8_1.2.3                   
##  [11] R6_2.5.1                      GetoptLong_1.0.5             
##  [13] withr_2.5.0                   prettyunits_1.1.1            
##  [15] gridExtra_2.3                 cli_3.6.1                    
##  [17] labeling_0.4.2                KEGGgraph_1.60.0             
##  [19] SQUAREM_2021.1                mvtnorm_1.2-2                
##  [21] blme_1.0-5                    mixsqp_0.3-48                
##  [23] parallelly_1.36.0             invgamma_1.1                 
##  [25] RSQLite_2.3.1                 generics_0.1.3               
##  [27] shape_1.4.6                   gtools_3.9.4                 
##  [29] dplyr_1.1.2                   Matrix_1.5-4.1               
##  [31] ggbeeswarm_0.7.2              fansi_1.0.4                  
##  [33] abind_1.4-5                   lifecycle_1.0.3              
##  [35] yaml_2.3.7                    edgeR_3.42.4                 
##  [37] gplots_3.1.3                  grid_4.3.0                   
##  [39] blob_1.2.4                    promises_1.2.0.1             
##  [41] crayon_1.5.2                  lattice_0.21-8               
##  [43] beachmat_2.16.0               msigdbr_7.5.1                
##  [45] annotate_1.78.0               KEGGREST_1.40.0              
##  [47] pillar_1.9.0                  knitr_1.43                   
##  [49] ComplexHeatmap_2.16.0         rjson_0.2.21                 
##  [51] boot_1.3-28.1                 corpcor_1.6.10               
##  [53] future.apply_1.11.0           codetools_0.2-19             
##  [55] glue_1.6.2                    data.table_1.14.8            
##  [57] vctrs_0.6.3                   png_0.1-8                    
##  [59] Rdpack_2.4                    gtable_0.3.3                 
##  [61] assertthat_0.2.1              cachem_1.0.8                 
##  [63] xfun_0.39                     rbibutils_2.2.13             
##  [65] S4Arrays_1.0.4                mime_0.12                    
##  [67] Rfast_2.0.7                   iterators_1.0.14             
##  [69] interactiveDisplayBase_1.38.0 ellipsis_0.3.2               
##  [71] nlme_3.1-162                  pbkrtest_0.5.2               
##  [73] bit64_4.0.5                   progress_1.2.2               
##  [75] EnvStats_2.7.0                filelock_1.0.2               
##  [77] TMB_1.9.4                     irlba_2.3.5.1                
##  [79] vipor_0.4.5                   KernSmooth_2.23-21           
##  [81] colorspace_2.1-0              rmeta_3.0                    
##  [83] DBI_1.1.3                     DESeq2_1.40.1                
##  [85] tidyselect_1.2.0              bit_4.0.5                    
##  [87] compiler_4.3.0                curl_5.0.0                   
##  [89] graph_1.78.0                  BiocNeighbors_1.18.0         
##  [91] DelayedArray_0.26.3           scales_1.2.1                 
##  [93] caTools_1.18.2                remaCor_0.0.17               
##  [95] rappdirs_0.3.3                stringr_1.5.0                
##  [97] digest_0.6.33                 minqa_1.2.5                  
##  [99] aod_1.3.2                     XVector_0.40.0               
## [101] RhpcBLASctl_0.23-42           htmltools_0.5.5              
## [103] pkgconfig_2.0.3               lme4_1.1-33                  
## [105] sparseMatrixStats_1.12.0      highr_0.10                   
## [107] fastmap_1.1.1                 rlang_1.1.1                  
## [109] GlobalOptions_0.1.2           shiny_1.7.4                  
## [111] DelayedMatrixStats_1.22.0     farver_2.1.1                 
## [113] BiocSingular_1.16.0           RCurl_1.98-1.12              
## [115] magrittr_2.0.3                GenomeInfoDbData_1.2.10      
## [117] munsell_0.5.0                 Rcpp_1.0.11                  
## [119] babelgene_22.9                viridis_0.6.3                
## [121] EnrichmentBrowser_2.30.1      RcppZiggurat_0.1.6           
## [123] stringi_1.7.12                zlibbioc_1.46.0              
## [125] MASS_7.3-60                   plyr_1.8.8                   
## [127] parallel_4.3.0                listenv_0.9.0                
## [129] ggrepel_0.9.3                 Biostrings_2.68.1            
## [131] splines_4.3.0                 hms_1.1.3                    
## [133] circlize_0.4.15               locfit_1.5-9.7               
## [135] reshape2_1.4.4                ScaledMatrix_1.8.1           
## [137] BiocVersion_3.17.1            XML_3.99-0.14                
## [139] evaluate_0.21                 BiocManager_1.30.20          
## [141] nloptr_2.0.3                  foreach_1.5.2                
## [143] httpuv_1.6.11                 tidyr_1.3.0                  
## [145] purrr_1.0.1                   future_1.32.0                
## [147] clue_0.3-64                   scattermore_1.1              
## [149] rsvd_1.0.5                    broom_1.0.5                  
## [151] xtable_1.8-4                  fANCOVA_0.6-1                
## [153] later_1.3.1                   viridisLite_0.4.2            
## [155] truncnorm_1.0-9               tibble_3.2.1                 
## [157] lmerTest_3.1-3                glmmTMB_1.1.7                
## [159] memoise_2.0.1                 beeswarm_0.4.0               
## [161] AnnotationDbi_1.62.1          cluster_2.1.4                
## [163] globals_0.16.2                GSEABase_1.62.0