Extract residuals from dreamletResult
Details
"response" residuals are the typical residuals returned from lm(). "pearson" residuals divides each residual value by its estimated standard error.  This requires specifying y
Examples
library(muscat)
library(SingleCellExperiment)
data(example_sce)
# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE
)
# voom-style normalization
res.proc <- processAssays(pb, ~group_id)
#>   B cells...
#> 0.2 secs
#>   CD14+ Monocytes...
#> 0.31 secs
#>   CD4 T cells...
#> 0.23 secs
#>   CD8 T cells...
#> 0.13 secs
#>   FCGR3A+ Monocytes...
#> 0.26 secs
# Differential expression analysis within each assay,
# evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)
#>   B cells...
#> 0.2 secs
#>   CD14+ Monocytes...
#> 0.74 secs
#>   CD4 T cells...
#> 0.2 secs
#>   CD8 T cells...
#> 0.13 secs
#>   FCGR3A+ Monocytes...
#> 0.24 secs
# extract typical residuals for each assay (i.e. cell type)
# Return list with entry for each assay with for retained samples and genes
resid.lst <- residuals(res.dl)
# Get Pearson residuals:
# typical residuals scaled by the standard deviation
residPearson.lst <- residuals(res.dl, res.proc, type = "pearson")