Forest plot
Forest plot of effect size estimates at the leaves of the tree
Arguments
- x
result from
treeTest()
- ...
other arguments
- hide
hide rownames and legend
Examples
library(variancePartition)
# Load cell counts, clustering and metadata
# from Kang, et al. (2018) https://doi.org/10.1038/nbt.4042
data(IFNCellCounts)
# Apply crumblr transformation
cobj <- crumblr(df_cellCounts)
# Use dream workflow to analyze each cell separately
fit <- dream(cobj, ~ StimStatus + ind, info)
fit <- eBayes(fit)
# Perform multivariate test across the hierarchy
res <- treeTest(fit, cobj, hcl, coef = "StimStatusstim")
# Plot log fold changes from coef
plotForest(res)